skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mitra, Partha P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sparse reconstruction algorithms aim to retrieve high-dimensional sparse signals from a limited number of measurements. A common example is LASSO or Basis Pursuit where sparsity is enforced using an `1-penalty together with a cost function ||y − Hx||_2^2. For random design matrices H, a sharp phase transition boundary separates the ‘good’ parameter region where error-free recovery of a sufficiently sparse signal is possible and a ‘bad’ regime where the recovery fails. However, theoretical analysis of phase transition boundary of the correlated variables case lags behind that of uncorrelated variables. Here we use replica trick from statistical physics to show that when an Ndimensional signal x is K-sparse and H is M × N dimensional with the covariance E[H_{ia}H_{jb}] = 1 M C_{ij}D_{ab}, with all D_{aa} = 1, the perfect recovery occurs at M ∼ ψ_K(D)K log(N/M) in the very sparse limit, where ψ_K(D) ≥ 1, indicating need for more observations for the same degree of sparsity. 
    more » « less